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Background:  Mapping  of cardiac  electrical  activity  can  be  difficult  when  electrogram  morphology  is com-
plex. Complex  morphology  (multiple  and  changing  deflections)  causes  activation  maps  to vary  when
constructed  by  different  analysts,  particularly  at areas  with  spatially  varying  conduction  pattern.  An
algorithm  was developed  to automatically  detect  electrogram  activation  time  which  is  robust  to  complex
morphology.
Method:  Electrograms,  many  of which  were  complex,  were  collected  from  320  canine  epicardial  border
zone  sites  in five  experiments.  A  library  of  electrogram  activation  times  were  manually  marked  a  priori
by two  expert  analysts.  Then  an  algorithm  which  combined  correlation  and  error  functions  was  used  to
compare  each  input  electrogram  to  library  electrogram  patterns.  The  closest  match  of  input  to  library
electrogram  was  used  to estimate  activation  time.  Once  activation  times  at 320  sites  were  determined,
activation  maps  were  automatically  constructed  on a computerized  grid.  The  algorithm  was validated  by
comparison  with  activation  times  determined  by  the analysts.
Results:  The  mean  difference  between  manual  and  automated  marking  of activation  time  in  electrograms
acquired  during  reentrant  ventricular  tachycardia  was  2.1 ± 3.9 ms.  The  mean  sensitivity  and  positive

predictive  value  were  95.9%  and  83.8%  respectively.  The  computer-automated  marking  process  was  com-
pleted  within  a few  seconds  and  was  robust  to fractionated  electrograms.  Measurement  error  was  mostly
attributable  to 60 Hz  noise,  which  can  be  rectified  with  filtering.
Conclusions:  The  automated  algorithm  is useful  for rapid  and  accurate  automatic  marking  of multichannel
electrograms,  some  of  which  may  be fractionated,  as well  as for real-time  display  of  activation  maps  in

 or re
clinical  electrophysiology

. Introduction

Electrical activation mapping is widely used in clinical electro-
hysiologic study to assist in diagnosis and treatment of cardiac
hythm disorders [1],  during the testing of antiarrhythmic drugs
2] and for detection of heart arrhythmias [3].  Although many
ypes of cardiac mapping devices are known [4],  most of them
equire the storage of large volumes of data which is processed
anually, with the results displayed as isochronal maps [5–8].

et for accurate analysis, the spatial resolution of multichannel

lectrodes should be high (2–5 mm).  Manual marking of complex
ractionated electrograms for activation time, or even automated

arking with manual correction, is time-consuming, particularly
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when multiple cardiac cycles require marking and mapping. Yet
it is these electrograms that are most often pertinent for identi-
fying arrhythmogenic regions. Thus, accurate activation mapping
during electrophysiologic study in real or near-real time can be
difficult.

Automated algorithms for recognition and processing of heart
signals are commonly tested with standard databases [9]. These
algorithms, mostly intended to recognize ectopic beats and
arrhythmogenic processes [10], have limited utility in heart surface
cardiac mapping. Besides the increased likelihood of fraction-
ated waveforms appearing in surface recordings in remodeled
tissues, particularly when recorded during tachyarrhythmias, the
time of all electrical activation points must be determined pre-
cisely to accurately detect complex activation patterns [11]. It is
even more difficult to identify activation times during fibrillation,

although template matching methods have been used with some
success [12,13]. However, when complex electrical activity causes
time-varying polyphasic electrogram deflections, and is of variable
duration, template matching is often not satisfactory [14]. Another
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ifficulty of automated marking is the fact that poor electrode con-
act can cause additive noise and motion artifact.

To overcome these limitations, an algorithm was developed to
apidly determine activation time and to display activation maps
rom multichannel electrogram data. The automated algorithm cor-
elates small segments of the acquired electrograms to a set of
ibrary patterns. In this study, a statistical analysis of the method
s compared with manual marking is done, and the affect of the
ignal-to-noise ratio on algorithm performance is discussed.

. Methods

.1. Data acquisition

In mongrel dogs anesthetized with 30 mg/kg of sodium pen-
obarbital and having a weight of 20–40 kg, the left anterior
escending coronary artery (LAD) was surgically ligated near its ori-
in [15]. Three to five days post-LAD ligation, the same anesthetic
as administered and the animals were prepared for electro-
hysiologic analysis by applying positive pressure ventilation and
pening the chest cavity, exposing the heart through a midsternal
pening. A 312 bipolar electrode array with 3–5 mm spatial resolu-
ion and 1 mm spacing between bipoles was sutured to the anterior
eft ventricle over the epicardial border zone, the narrow rim of sur-
iving myocardium on the epicardial surface of the healing infarct.
n each experiment, the array approximately overlapped the entire
picardial border zone, as could be ascertained by noting the color
f the heart surface and by electrogram characteristics. Electrogram
ignals of 5 s duration were amplified 100–1000×, bandpassed from

 to 500 Hz, sampled at 1 kHz, and recorded on archival media
long with electrocardiogram, stimulus channel and blood pressure
16]. Following each experiment, the data were analyzed using PC-
omputer software programs that were developed by the authors.
onomorphic VT was initiated using programmed electrical stim-

lation from electrodes positioned at the border zone margins or
rom its center, using twice the current threshold required for a
ropagated response. The pace train for induction consisted of
en S1–S1 stimuli, each of 2 ms  duration, that were separated by
pproximately 300 ms  intervals, and were followed by a single
xtrastimulus S2 of 2 ms  duration. The S1–S2 coupling interval was
ecreased by 5–10 ms  during each sequence until monomorphic
entricular tachycardia was induced or a propagated response was
ot initiated. Monomorphic ventricular tachycardia episodes were
ften repeatedly induced by the same procedure and included non-
ustained runs (<30 s duration), and sustained episodes which were
ace-terminated (>30 s duration). Use of canines conformed to the
uidelines of the American Physiological Society and AAALAC.

.2. Activation marking and mapping

Bipolar electrograms were manually marked for activation time
y two experts based on morphology, by selecting the sharpest
lope associated with a large peak deflection, so that timing would
e similar to that of electrically contiguous nearby recording sites
15,16]. The experts were electrophysiologists with at least 2 years’
xperience in manual activation marking and mapping. It has been
hown that when bipolar electrograms are marked, morphological
lgorithms produce fewer anomalous activation times as compared
ith peak and fastest zero crossing techniques [17]. Marks in agree-
ent within 5 ms  were used for further analysis, with the marking

imes for the two experts being averaged. The activation times

ere mapped on a computerized grid. On these grids, individual

ctivation times could be displayed, as well as isochronal lines
f activation with 10–20 ms  spacing. Lines of block were consid-
red to occur at boundaries where activation on either side was
sing and Control 8 (2013) 41– 49

dyssynchronous by ≥40 ms  and the activation wavefront propa-
gated in different directions. The reentry isthmus location during
monomorphic ventricular tachycardia, its functional block lines,
and entrance and exit point locations were determined.

In previous work, the mean squared error difference between
an input electrogram and a prototypical or template electrogram
(extracted from the first cardiac cycle in the sequence) was used
for comparison [18,19]. Yet, this method can be sensitive to outliers
due to the quadratic term. Digital correlation, which is less sensi-
tive to outliers caused by large differences in signal shape [20,21],
was utilized in the present study to compare library template to
input. A problem with digital correlation however is that the typi-
cal correlation signal can present sidelobes, or local maxima, due to
overlap of template peaks to non-corresponding peaks in the input
electrogram. This phenomenon can make it difficult to identify
the global maxima representing the correct match of electrogram
input to template. If for example the electrogram is fractionated
or otherwise multiphasic, the relative relationship between peak
amplitudes may  change from one cardiac cycle to the next. The
effect is that maximum correlation can occur when multiphasic
peaks of input and template are aligned with the wrong counter-
part. To reduce this potentially large source of error, a measure of
the degree of overlap in the input to the template trace is needed
[22]. This was done as follows. Consider an electrogram input x(n)
and a template pattern y(n), then:

rxy(i) = �−1 ·
∑

x(n + i) · y(n) for n = 1, . . . , �, i = 1, . . . , s (1)

and

exy(i) = �−1 ·
∑

|x(n + i) − y(n)| for n = 1, . . . , �, i = 1, . . . , s

(2)

where rxy(i) and exy(i) are, respectively, the correlation and the
absolute error signal between the electrogram x and pattern y, � is
the pattern duration, and s is the sequence length of the input signal.
As the error and correlation are evaluated for sample i, the pattern
will be matched within the interval [i, i + s] of the electrogram. If
input and template are similar, maxima in rxy(i) (i.e., when corre-
lation is maximized) will coincide with minima in exy(i) (when the
degree of overlap of template and input electrogram is maximized).
Peaks in the correlation signal as described by Eq. (1) were used to
identify candidate activation times. The value of the absolute error,
given by Eq. (2), served to estimate the similarity of template to
input. If template and input are similar (nearly overlapping) then
the value of exy(i) will be small. Activation was  considered to occur
at points where rxy(i) peaked and exy(i) was  below a threshold level.
The threshold level was  determined heuristically by training with
an exemplar set of electrograms to approximately maximize the
sensitivity of the method. The threshold was  set to approximately
10% of the mean absolute value of the input. Once an activation
point was  detected, an adjustment in time t served to align the cor-
relation peak with the actual time of local activation in each library
template, as determined prior to implementation.

2.3. Automated activation marking algorithm

Each input electrogram was  preprocessed as follows before
estimating the activation time: the electrogram was  normalized
by setting the average (baseline) level to zero and adjusting the
peak-to-peak amplitude to 1 mV.  Fig. 1 shows an arbitrary input
electrogram x(n), and its result after normalization xnor(n) which is

shown in the second row. This does not change the intrinsic shape,
but only the shift and scale along the y-axis. The correlation of
input electrogram with an arbitrary template of length � sample
points is shown in the third row in Fig. 1 and is termed Corr(n),
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Fig. 1. Computation of the correlation signal. Electrogram x(n) and its normalized
version x(n)nor, the correlation signal Corr(n) and its filtered version Corr(n)filt are
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hown. Corr(n)filt is converted to a binary signal (bottom trace). Maxima in Corr(n)
ithin binary 1 (high level) are used as activation marks, denoted by the gray vertical

ines in x(n).

hich is then low pass filtered to remove local extrema, forming
orrFilt(n), shown in the fourth row. The low pass filter was a Ham-
ing window finite impulse response (FIR) with 28 coefficients,

nd had a corner frequency, determined heuristically, of 19.5 Hz.
he CorrFilt(n) signal was then transformed to a binary signal using
hresholding (lowest trace in Fig. 2). The threshold T utilized was:

 = 0.5 × MA  [PCorrFilt(n)] (3)

here MA  is the moving average and P are the peak values of the
ltered correlation signal. Thus prior detected peak amplitudes are

sed to form the moving average. The estimated activation time
as defined as the time of raw correlation signal maximum during

he interval binary 1. Since the binary 1 interval extended across
he base of each major electrogram deflection, the slight phase

ig. 2. Examples of patterns in the final library database. The vertical line indicates
he actual activation time for each pattern that was determined by the expert ana-
ysts. The time interval t from pattern start to activation mark is the shift that is used
o  generate the estimated activation time when the template is optimally aligned
ith the input electrogram. All patterns have been scaled to the same peak-to-peak

mplitude and plotted using the same time scale.
sing and Control 8 (2013) 41– 49 43

delay caused by low pass filtering during binary signal formation
would not be expected to significantly affect the result. The process
was repeated for all input electrograms, so that the correlation sig-
nal was obtained for each template, and the estimated activation
time was  selected from the template with the highest correlation
maximum. Thus the template used to mark each electrogram could
change from one cycle to the next.

2.4. Library database construction

To construct the database, a set of 350 templates were extracted
from exemplar bipolar electrogram signals acquired using the 312
array during five instances of reentrant ventricular tachycardia in
the canine postinfarction experiments (total of 1560 electrogram
signals with recording duration of 5 s). The electrogram signals to
be used as templates were selected as having varied shapes and
multiphasic deflections. To increase computational efficiency, the
library size was reduced prior to testing. When all 350 electro-
grams had been selected, each was  cross-correlated with the other
electrograms, and the electrograms with the highest average corre-
lation value were removed from the set. The process was repeated
until the database was  reduced to a set of 120 electrograms that
were mostly uncorrelated with one another. Of  the 120 final tem-
plate electrograms, the library size was  adjusted subsequently to
maximize sensitivity and positive predictive value (PPV) during
subsequent testing of the algorithm. Examples from the library
of 120 templates, along with their activation times as denoted by
vertical lines, are shown in Fig. 2. There are a variety of shapes
and multiphasic peaks, with differing amplitude and duration. Each
pattern was  stored along with its activation time t, which was deter-
mined by the expert analysts. Prior to storage, each pattern was
normalized to 1 mV  peak-to-peak amplitude.

2.5. Video animation

To animate the data, the location of each site was highlighted
on a computerized electrode grid, and bilinear interpolation was
used for aesthetic effect to extend the resolution of the map grid
beyond the location of the 312 map  points. The interpolation was
done automatically in Matlab (ver. 5.1, 1997, The MathWorks, Inc.,
Natick, MA). For video animation, the output of the automated
activation marking algorithm described above was smoothed in
time to produce a fixed-width peak for each correlation maximum
detected. Then, it was  color-coded and its value was used to build
each frame of the animation.

2.6. Measurement and statistics

To validate the automated marking process and the library set
described above, electrogram recordings acquired from the canine
epicardial border zone during pacing and reentrant ventricular
tachycardia were marked for activation by the expert analysts. The
automated algorithm was applied and the correspondence to man-
ual marking was determined by tabulating the differences between
manual and automated activation times. Activation time differ-
ences <10% of the maximum possible error, which depended on
cycle length, were considered to be true positive (TP); otherwise
the actual activation time that was  not marked by the automated
algorithm was  classified as false negative (FN). Any time there was
a mark made by the software with no corresponding mark by the
user, it was  considered to be a false positive (FP). There were no true
negatives, since any position on the electrogram outside the 10%

interval could be considered to be a true negative. Therefore only
sensitivity S (true positives divided by true positives + false nega-
tives) and positive predictive value PPV (true positives divided by
true positives + false positives) were calculated. The sensitivity of
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ig. 3. Four electrograms (upper trace in panels A–D), and their unfiltered and filtere
aximum in the correlated signal indicates the estimated activation time.

he procedure was calculated as the percentage of beats correctly
elected by the algorithm with respect to the total number of beats
arked by the analyst. The positive predictive value was calcu-

ated as the percentage of beats correctly selected by the algorithm
ith respect to the total number of beats it detected. Results were
resented as mean ± standard deviation.

. Results

Fig. 3 shows the result of applying the algorithm to electrograms
ith additive noise over a 1 s analysis interval (4–5 cardiac cycles).

n each panel, the input electrogram is in the upper panel, and in
he lower panel is the correlation signal (solid line), the smoothed
filtered) correlation signal (dashed line), and the time windows
etected after thresholding the smoothed correlation signal (dot-
ed line). The electrograms in Fig. 3A and B have high signal-to-noise
atios but differ markedly in shape. Each electrogram is composed
f multiple deflections with a relatively constant shape from one
ycle to the next, except for some variation in amplitude. The elec-

rogram in panel A has several wide deflections, whereas in panel

 there are mostly narrow deflections. The correlation signals in
he lower panels of Fig. 3A and B vary slightly in peak height. For
oth electrograms, each peak of the raw correlation aligns with
relation signal with time window detected (lower traces in panels A–D). Each global

the region of sharpest slope associated with the largest deflection.
The phase lag of the correlation signal has been adjusted by t, the
actual activation time of the template (Fig. 3A and B – vertical lines).
It is evident by comparison of the top and bottom panels in Fig. 3A
and B that there is a close correspondence between manual and
automated marking. Fig. 3C and D shows the result of applying
the algorithm to two different electrograms with relatively low
signal-to-noise ratio over the recording interval. Most of the noise is
caused by 60 Hz frequency. Although noise is present, there is close
correspondence between estimated and actual activation time. In
panel C, the third beat was  manually marked at the downward
slope of the activation which is steepest on this cycle, instead of
the upward slope as was  done for beats 1, 2, and 4. The differ-
ence between estimated and actual activation time is still within
±5 ms.

Examples of automarking when electrograms have some cycle-
to-cycle changes in morphology are shown in Fig. 4. The top panels
show the electrogram and the bottom panels show the respec-
tive filtered correlation function. In the left top panel, changes in

peak amplitude occur, particularly on the last cycle. In the right top
panel, conduction alternans causes changes in the far-field signal.
The automarking technique is robust to these types of alterations,
which can be common in recorded electrograms.
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ig. 4. Examples of electrograms with changing morphology (upper panels) and t
ertical dashed line. For clarity the mask and unfiltered correlation signals are not s
The relationship between error function and correlation func-
ion for two electrogram series is shown in Fig. 5. This series
as taken from the onset of monomorphic reentrant ventricular

achycardia with a double-loop circuit as initiated by premature
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ig. 5. Examples of automated electrogram marking at ventricular tachycardia onset. Pan
nd  D: Corresponding error function (upper trace) and correlation function (lower trace) f
utomated activation mark for each cardiac cycle, which coincide within a few millisecon
ltered correlation signals (lower panels). The automarked location is shown as a
.

excitation. The electrograms are shown in the top panels. The
recording sites for the electrogram traces provided were in prox-
imity to the reentry isthmus. The value of the template duration
� is 200 sample points. The raw correlation and error functions
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Fig. 6. Positive predictive value (dashed) and sensitivity (solid) for the method,
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Table 1
Statistics.

# pat. Sensi. PPV TP FP FN

50 90.2 95.8 1354 59 147
60 93.5 95.8 1402 61 97
70 95.0 95.8 1423 62 75
80  95.9 95.9 1438 61 61
90 96.0 95.7 1436 64 60

100  96.4 95.7 1441 65 54
110  96.6 95.5 1441 68 51
120  96.5 95.4 1439 69 52

# pat., number of patterns used for matching; sensi., sensitivity; PPV, positive pre-

F
(
i
a
i

sing a library size from 50 to 120. The optimal number of patterns to be used
n  the template library is 80 (cross of traces).

re graphed in the lower panels. Asterisks show the time of max-
mum/minimum in correlation and error function (max/min) each
ardiac cycle. There is an alignment of max/min in the lower panels
ith the sharpest slope of each electrogram deflection in the top
anels, which is the actual activation time. Although some of the
lectrograms are quite variable in morphology from one cardiac
ycle to the next, the alignment error is at most a few millisec-
nds.

The relationship between varying library database size from
0 to 120 template patterns, to the sensitivity and PPV statistics
s applied to the exemplar set of 1560 electrograms, is shown in
ig. 6 (solid and dashed lines, respectively). The sensitivity sharply
ecreases as the database size decreases below 80 templates. The
PV decreases slightly when more than 80 templates are included
n the library database. The statistics of Fig. 6 are displayed in
able 1 for increments of 10 patterns. At left are shown the sen-
itivity and positive predictive values, and at right are the number

f true positives, false positives, and false negatives out of a total
f 1560 electrograms analyzed. Most analyzed electrograms were
orrectly marked by automated means even when only 50 patterns

ig. 7. Estimated activation times during extrastimulation from the left anterior descend
B–F)  Five images taken from an animation sequence generated by the algorithm with e
ncongruous activation times (panel A) were excluded during the automated constructin
rea  activates in 160 ms). Regions of dark orange-red are activating during the time epoch
nterpretation of the references to color in this figure legend, the reader is referred to the
dictive value; TP, true positives; FP, false positive; FN, false negatives. Total number
of  electrograms analyzed = 1560.

were used (≥1354 electrograms). In many instances the number of
false positives (incorrect markings) and false negatives (not marked
where an activation event occurred) was  only a small fraction of the
total number of electrograms analyzed. However at 50–60 patterns
used for matching, the number of false negatives was relatively
high (147 and 97, respectively) due to the smaller template pool,
which caused some deflections to not be recognized as an activation
event.

A database size of 80 templates resulted in a sensitivity and PPV
greater than 95%, and this value was  used to estimate activation
time in the test set. For all test set data, the automated marking
process had a sensitivity of 95.9% and a PPV of 83.8%. The mean
difference in time between estimated and actual activation marks
was 2.1 ± 3.9 ms.  Each activation marking analysis of 312 electro-
grams required approximately 10 s to complete prior to display of
the video on a fast PC-type computer.

An example of an automatically generated isochronal activation
map  of the left ventricular epicardial border zone during induc-
tion of double-loop reentrant ventricular tachycardia is shown in
Fig. 7. Stimulation from the LAD margin with the right ventricle
at a 300 ms  overdrive coupling interval resulted in induction of
this tachycardia. The activation map  without error function cor-
rection is shown in Fig. 7A. The interval for activation of the entire

mapped area following the stimulus is approximately 160 ms, and
the sequence of activation is shown by the isochrones. Activa-
tion proceeds rapidly from the pace site toward the center of the

ing coronary artery pacing site. (A) Contour map  without error function correction.
rror function correction. The contribution of the several noisy electrograms with
g of the animation maps (panels B–F). Images are separated by 32 ms (the entire

 of the map. Generation of the colormap for panels B–F is described in the text. (For
 web version of the article.)
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Fig. 8. Estimated activation times during sustained reentrant ventricular tachycardia. (A) Contour map. (B–F) Five images taken from the animation sequence generated by
the  algorithm. Images are separated by 40 ms.  Areas of dark orange-red are activating. (For interpretation of the references to color in this figure legend, the reader is referred
t
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rid (upper left in Fig. 7A, yellow). Functional conduction block
ccurs near the center due to refractoriness, so that the wavefront
ifurcates, the distinct wavefronts curve around, and then they
oalesce toward the lower portion of the mapping gird (apical-
AT margin). There is a pause in conduction (light blue) which
as followed by reentry into the previously excited border zone

egion, so that ventricular tachycardia onset occurs. Examples of
nimation maps for this cardiac cycle are shown in Figs. 7B–F, and
hey represent the same activation sequence as is shown by the
ctivation map  in Fig. 7A. However the colors in Fig. 7B–F are rep-
esentative of activation status, not activation time as in panel A. In
ig. 7B–F, red denotes the occurrence of activation, while blue indi-
ates that there is no activation during the particular time epoch of
he frame. Yellow represents border areas between activation and
on-activation. The stimulus site corresponds approximately to the
mall red region at upper left in panel B, at the LAD margin with the
ight ventricle, and the wavefront begins to expand outward (yel-
ow). In panel C, a large area of the border zone is activating, and
onduction velocity is rapid. However, the wavefront encounters
n obstacle in panel D and bifurcates. The distinct wavefronts con-
inue in the same direction, toward the apical-LAT margin which
s toward the bottom of the grid. Coalescence of the wavefronts
s shown in panel E to occur at the apical-LAT margin. The soli-
ary wavefront then proceeds through a constrained region (panel
), and then reenters the previously excited tissue in the direction
oward the LAD margin.

Animation for a cycle of sustained reentrant ventricular tachy-
ardia after its induction by extrastimulation is shown in Fig. 8 and
t is from a different experiment than Fig. 7. The panels show an
ctivation map  (A) and the animation sequence (B–F). The reen-
rant circuit present in the epicardial border zone (A) had a cycle
ength of 180 ms  for the cycle shown. Panels B–F show selected time
pochs of the animation map. Late diastolic activation is shown
n panel B, exit of the activation wavefront from the isthmus in

anel C, propagation as two distinct wavefronts around the periph-
ry in panels D–E, and coalescence at the isthmus entrance in
anel F. Exit from the isthmus is toward the apical-LAT margin in
ig. 8F.
4. Discussion

4.1. Algorithm

An algorithm for automated marking and mapping of electro-
grams acquired from the epicardial border zone during ventricular
tachycardia in canine postinfarction was described. The correlation
and error functions were used for marking, and they can easily be
adjusted to change the desired sensitivity and PPV of the detection
algorithm if needed. The dynamic and beat-to-beat variability of
electrogram waveforms over time during ventricular tachycardia
can be significant. Thus the ability of the algorithm to switch tem-
plates for marking (see Section 2), or even to develop a new set of
library templates when new types of electrogram data arise, can be
helpful to increase the robustness of the approach. In our study, for
signals with low signal-to-noise ratio, most of the misdetections in
the test set were due to unexpected activation patterns that were
not included in the database. To resolve this problem in future ver-
sions of the algorithm, the database can be continuously updated
using a self-learning system with weighted adaptation [22,23].  For
signals with poor signal-to-noise ratios, peaks in the correlation sig-
nal sometimes aligned with an electrogram’s sharpest noisy waves,
while the true activation point was partially masked by noise and
remained undetected. A notched or matched filter to remove fre-
quencies near 60 Hz can be incorporated in future versions of the
algorithm in cases when line frequency interference is significant.

4.2. Other automated activation marking and mapping
techniques

When reentrant ventricular tachycardia originates from the
infarct border zone, the extracellular signal shape is complex and
the contribution of far-field potentials can be substantial [23]. For
automated detection of complex electrogram activation time, mor-

phologically based algorithms such as is described in our study
have been shown to be advantageous as compared with slope-
and peak-based methods [24]. Morphologically based algorithms
have also been found useful to quantify electrogram organization
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uring atrial fibrillation, and to distinguish between different
pisodes of atrial fibrillation [25]. A reconstruction of the passage
f the electrical wavefront can be developed by modeling electro-
ram morphology as a symmetrical biphasic shape that neglects
ar-field activation and electrode diameter [26]. Activation time is
hen estimated using deconvolution. Areas of electrical conduction
lock have been automatically detected from time-frequency anal-
sis of unipolar electrograms [27]. Bipolar electrograms, used in our
tudy, may  be more difficult to analyze via spectral methods, since
eflections tend to be sharper and more complex. Methods for auto-
ated detection of spatiotemporal features in activation maps have

een developed by extracting wavefront structure from epicardial
ata using graphical techniques [13]. Such higher-level information
ould be useful to incorporate into our paradigm to determine, for

xample, the location of ectopic sites and abnormal propagation
egions. Automatic marking and mapping of human atrial fibril-
ation has been done using a template library of mathematically
efined unipolar electrograms [12]. However, complex fraction-
ted atrial electrogram components can be difficult to match and
equired separate analysis. The simultaneous use of correlation
nd error functions to determine the global optimum, as described
n our study, may  improve robustness to identify complex frac-
ionated atrial electrogram activation times even though these
aveforms are multiphasic, because points of high correlation must

oincide with points of low error difference for there to be a match
see Fig. 5).

.3. Limitations

Errors can arise when activation times are assigned at record-
ng sites where local electrical activity at the site does not occur
nd only far-field deflections are recorded. To account for this pos-
ibility, another level of complexity, in the form of inclusion of
patial relationships, could be added to future versions of the auto-
ated implementation. The algorithm was developed and tested
ith a small number of experiments. These results should be con-
rmed using a larger number of test sets. The automated marking
lgorithm diminished in accuracy in the presence of 60 Hz noise,
hich should be removed by notch or matched filtering in sub-

equent versions. For isochronal mapping, the stimulus artifact
an be a very important source of misdetection of the activa-
ion time, and should be masked when stimulus wavefronts are

apped. Application to unipolar electrograms, which may  have
ubtle deflections due to local electrical activity, should be tested in
uture study. The automarking algorithm was also not tested under
brillatory conditions, where estimation of activation time can be
reatly affected by electrogram fractionation. The applicability of
he method under these conditions should be determined in future
ork.

. Conclusion

An automated algorithm was developed to mark the electric
ctivation time of bipolar electrograms recorded from the epi-
ardial surface in postinfaction canine hearts. The algorithm was
hown to be useful for rapid and accurate automatic marking of
ultichannel electrograms, many of which were complex, dur-

ng ventricular tachycardia caused by a reentrant circuit. Based
n the activation marks, display of sequential color activation
aps and their usefulness to track the activation wavefront was
hown.
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